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1. Why Resample? Suppose that we want to estimate a parameter θ that
depends on a random quantity sample X = (X1, X2, . . . , Xn) in a compli-
cated way. For example, θ might be the sample variance of X or the log
sample variance. If the Xi are vector valued, θ could be the Pearson corre-
lation coefficient.

Assume that we have an estimator φn(X1, X2, . . . , Xn) of θ but do not
know the probability distribution of φn(X) given θ. This means that we
cannot estimate the error involved in estimating θ by φn(X1, . . . , Xn), and
that we cannot tell if we can conclude θ 6= 0 from an observed φn(X) 6= 0,
no matter how large.

More generally, can we get a confidence interval for θ depending only
on the observed X1, X2, . . . , Xn, or test H0 : θ = θ0 just using the data
X1, X2, . . . , Xn?

Methods that try to estimate the bias and variability of an estima-
tor φn(X1, X2, . . . , Xn) by using the values of φn(X) on subsamples from
X1, X2, . . . , Xn are called resampling methods. Two common resampling
methods are the jackknife, which is discussed below, and the bootstrap.

The jackknife was invented by Quenouille in 1949 for the more limited
purpose of correcting possible bias in φn(X1, X2, . . . , Xn) for small n. Tukey
in 1958 noticed that the procedure could be used to construct reasonably
reliable confidence intervals for a wide variety of estimators φn(X), and so
might be viewed as being as useful to a statistician as a regular jackknife
would be to an outdoorsman. Bootstrap methods were invented by Bradley
Efron around 1979. These are computationally more intensive (although
easier to program) and give more accurate results in some cases.

2. The Jackknife Recipe. Let φn(X) = φn(X1, . . . , Xn) be an estimator
defined for samples X = (X1, X2, . . . , Xn). The ith pseudovalue of φn(X) is

psi(X) = nφn(X1, X2, . . . , Xn)− (n− 1)φn−1( (X1, . . . , . . . , Xn)[i]) (1)

In (1), X[i] means the sample X = (X1, X2, . . . , Xn) with the ith value Xi

deleted from the sample, so that X[i] is a sample of size n− 1. Note

psi(X) = φn(X) + (n− 1)
(
φn(X)− φn−1(X[i])

)

so that psi(X) can be viewed as a bias-corrected version of φn(X) determined
by the trend in the estimators φn(X) from φn−1(X[i]) to φn(X).
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The basic jackknife recipe is to treat the pseudovalues psi(X) as if they
were independent random variables with mean θ. One can then obtain con-
fidence intervals and carry out statistical tests using the Central Limit The-
orem. Specifically, let

ps(X) =
1
n

n∑

i=1

psi(X) and Vps(X) =
1

n− 1

n∑

i=1

(
psi(X)− ps(X)

)2 (2)

be the mean and sample variance of the pseudovalues. The sample mean
ps(X) was Quenouille’s (1949) bias-corrected version of φn(X). The jack-
knife 95% confidence interval for θ is

(
ps(X)− 1.960

√
1
n

Vps(X) , ps(X) + 1.960

√
1
n

Vps(X)

)
(3)

Similarly, one can define a jackknife P-value for the hypothesis H0 : θ = θ0

by comparing

Z =
√

n
(
ps(X)− θ0

)
√

Vps(X)
=

ps(X)− θ0√
(1/n)Vps(X)

(4)

with a standard normal variable.

Remark: Technically speaking, the pseudovalues in (1) are for what is called
the delete-one jackknife. There is also a more general delete-k or block jack-
knife that we discuss below.

3. Examples (1) If φn(X) = 1
n

∑n
j=1 Xj = X is the sample mean for

θ = E(Xi), then the pseudovalues

psi(X) = nX − (n− 1)X[i] = Xi

are the same as the original values. Thus

ps(X) =
1
n

n∑

i=1

psi(X) = X and Vps(X) =
1

n− 1

n∑

i=1

(
Xi −X

)2 (5)

are the usual sample mean and variance.
(2) If φn(X) = 1

n−1

∑n
j=1(Xj −X)2 is the sample variance, then, after

some algebra, the pseudovalues of φn(X) are

psi(X) =
n

n− 2
(Xi −X)2 − 1

(n− 1)(n− 2)

n∑

j=1

(Xj −X)2 (6)
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The mean of the pseudovalues

ps(X) =
1
n

n∑

i=1

psi(X) =
1

n− 1

n∑

j=1

(Xj −X)2

is the same as φn(X) in this case also.
(3) If φn(X) = 1

n

∑n
j=1(Xj −X)2 is the sample variance with 1/(n− 1)

replaced by 1/n, then the pseudovalues of φn(X) are

psi(X) =
n

n− 1
(Xi −X)2 (7)

This implies that

ps(X) =
1
n

n∑

i=1

psi(X) =
1

n− 1

n∑

i=1

(
Xi −X

)2

is the usual sample variance. Note that E
(
φn(X)

)
= n−1

n σ2 for σ2 = Var(X)
while E

(
ps(X)

)
= σ2, so that ps(X) is a bias-corrected version of φn(X).

4. A Simple Example. Suppose that we have four observations {1, 2, 3, 4}
with φ4(X) = X. Thus φ4(X) = (1/4)

∑4
i=1 Xi = (1/4)(1+2+3+4) = 2.5.

The four delete-one values are φ3(X[1]) = (1/3)(2 + 3 + 4) = 3.0,
φ3(X[2]) = (1/3)(1 + 3 + 4) = 2.67, φ3(X[3]) = (1/3)(1 + 2 + 4) = 2.33,
and φ3(X[4]) = (1/3)(1 + 2 + 3) = 2.00.

The four pseudovalues are ps1(X) = 4φ4(X) − 3φ3(X[1]) = 4(2.50) −
3(3.0) = 10 − 9 = 1.0, ps2(X) = 4φ4(X) − 3φ3(X[2]) = 4(2.50) − 3(2.67) =
10−8 = 2.0, ps2(X) = 4φ4(X)−3φ3(X[3]) = 4(2.50)−3(2.33) = 10−7 = 3.0,
and ps2(X) = 4φ4(X)− 3φ3(X[4]) = 4(2.50)− 3(2.00) = 10− 6 = 4.0. Thus
the four pseudovalues are the same as the original observations, as they
should be for φn(X) = X.

5. Another Example. Suppose that we have 16 observations

17.23 13.93 15.78 14.91 18.21 14.28 18.83 13.45
18.71 18.81 11.29 13.39 11.57 10.94 15.52 15.25

and that we are interested in estimating the variance σ2 of the data and in
finding a 95% confidence interval for σ2. In order to minimize any possible
effect of outliers, we apply the jackknife to the log sample variance

φn(X1, . . . , Xn) = log(s2) = log

(
1

n− 1

n∑

i=1

(Xi −X)2
)
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instead of to s2 directly. For these 16 observations, s2 = 7.171 and φn(X) =
log(s2) = 1.9701.

The delete-one values φn−1(X[i]) on the 16 subsamples with n− 1 = 15
are

1.994 2.025 2.035 2.039 1.940 2.032 1.893 2.011
1.903 1.895 1.881 2.009 1.905 1.848 2.038 2.039

The corresponding pseudovalues psi(X) = nφn(X)− (n− 1)φn−1(X[i]) are

1.605 1.151 0.998 0.942 2.416 1.043 3.122 1.362
2.972 3.097 3.308 1.393 2.951 3.806 0.958 0.937

The mean of the pseudovalues is 2.00389, which is a little larger than the
initial estimate φn(X) = 1.9701. The sample variance of the 16 pseudovalues
is 1.091. The jackknife 95% confidence interval for the log variance log(σ2)
is (1.492, 2.516).

The 16 values in this case were drawn from a probability distribution
whose true variance is 5.0, with log(5.0) = 1.609, which is well within the
95% jackknife confidence interval.

6. The Delete-k or Block Jacknife. If n is large, the pseudovalues
psi(X) in (1) may be too close together, and the variance Vps(X) may be
mostly sampling error. In that case, we can define a block jackknife instead
of the delete-one jackknife defined above by proceeding as follow. Assume
n = nbk, where k will be the block size and nb is the number of blocks.
Define

psi(X) = nbφn(X1, X2, . . . , Xn)− (nb − 1)φn−k( (X1, . . . , . . . , Xn)[i] ) (8)

instead of (1), where now 1 ≤ i ≤ nb and X[i] means the sample X =
(X1, X2, . . . , Xn) with the ith block of k values — that is, with indices j in
the range ik + 1 ≤ j ≤ ik + k — removed.

For example, if n = 200, we might set k = 20 and nb = 10. Each of the
nb = 10 pseudovalues (8) would be defined in terms of φ200 on the full sample
and φ180 on a subsample of size 180. We then treat the 10 pseudovalues (8)
as a sample of 10 independent values with mean θ and proceed as before.

7. A Warning and Another Example: The jackknife should NOT be
applied if the estimator φn(X) is too discontinuous as a function of the Xi,
or if φn(X) depends on one or a few values in X.

For example, suppose that φn(X) is the sample median of X =
(X1, X2, . . . , Xn) where X1, . . . , Xn are distinct. Then
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Exercise: Suppose that n = 2m is even. Prove that
(a) There exists two numbers a, b depending on X1, . . . , Xn such that

each value φn−1(X[i]) is either a or b but
(b) the bias-corrected mean ps(X) = φn(X).

How do these results change if n = 2m + 1 is odd?

8. Coverage Frequencies for Jackknife Confidence Intervals. As a
test of the jackknife confidence interval (3), we generate 10,000 samples of
size n = 20 from the probability distribution 12x(1−x)2 on the unit interval
(0, 1). (This is a beta density with parameters α = 2 and β = 3.)

For each sample of size 20, we compute the jackknife 95% confidence (3)
for the variance, and count the number of samples out of 10,000 for which the
jackknife 95% confidence interval contains the true variance, which is 0.048
in this case.

The coverage probability of a (putative) confidence interval is the prob-
ability that it actually contains the true value. If it is supposed to be a
95% confidence interval, then the coverage probability should be as close to
0.95 as possible. If the coverage probability is higher, then the confidence
intervals are too conservative. If the coverage probability is lower, then they
are too small and we may be misled.

We do the same calculation for φn(X) replaced by the logarithm of the
variance, and also for the jackknife 99% confidence interval (3) with 1.96
replaced by 2.576.

As a third test, we generate 10,000 samples of n = 20 pairs of standard
normal variables (Xi, Yi) with a theoretical Pearson correlation coefficient of
ρ = 0.50, and apply the same procedures for the sample (Pearson) correlation
coefficient.

Some typical jackknife confidence intervals in these cases are

Beta: variance Beta: log variance Normal: ρ

95%: (0.0221, 0.0655) (-4.2420, -2.9155) (0.1976, 0.8387)
99%: (0.0153, 0.0723) (-4.4505, -2.7071) (0.0968, 0.9395)

The estimated coverage probabilities were

95%: 0.9025 0.9390 0.9017
99%: 0.9503 0.9779 0.9556

Thus the confidence intervals tend to be a bit small, but are approximately
correct. Psuedovalues for the logarithm of variance are better behaved than
pseudovalues for the variance itself, presumably because the effect of large
sample variances is smaller.

We might expect the results to be worse if the sample were smaller or
if the distribution was more heavy tailed, for example having an exponential
instead of a beta distribution, but this remains to be checked.


